ISBDD Model for Classification of Hyperspectral Remote Sensing Imagery
نویسندگان
چکیده
منابع مشابه
ISBDD Model for Classification of Hyperspectral Remote Sensing Imagery
The diverse density (DD) algorithm was proposed to handle the problem of low classification accuracy when training samples contain interference such as mixed pixels. The DD algorithm can learn a feature vector from training bags, which comprise instances (pixels). However, the feature vector learned by the DD algorithm cannot always effectively represent one type of ground cover. To handle this...
متن کاملIndependent-component analysis for hyperspectral remote sensing imagery classification
Harold Szu, FELLOW SPIE Office of Naval Research Arlington, Virginia 22217 Abstract. We investigate the application of independent-component analysis ICA to remotely sensed hyperspectral image classification. We focus on the performance of two well-known and frequently used ICA algorithms: joint approximate diagonalization of eigenmatrices JADE and FastICA; but the proposed method is applicable...
متن کاملAnomaly Detection from Hyperspectral Remote Sensing Imagery
Hyperspectral remote sensing imagery contains much more information in the spectral domain than does multispectral imagery. The consecutive and abundant spectral signals provide a great potential for classification and anomaly detection. In this study, two real hyperspectral data sets were used for anomaly detection. One data set was an Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) da...
متن کاملOverlap-based feature weighting: The feature extraction of Hyperspectral remote sensing imagery
Hyperspectral sensors provide a large number of spectral bands. This massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. Therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. We propose to use overlap-based feature weigh...
متن کاملNonlocal Total Variation Subpixel Mapping for Hyperspectral Remote Sensing Imagery
Ruyi Feng 1,2, Yanfei Zhong 1,2,*, Yunyun Wu 3, Da He 1,2, Xiong Xu 4 and Liangpei Zhang 1,2 1 State Key Laboratory of Information Engineering in Surveying, Mapping, and Remote Sensing, Wuhan University, Wuhan 430079, China; [email protected] (R.F.); [email protected] (D.H.); [email protected] (L.Z.) 2 Collaborative Innovation Center of Geospatial Technology, Wuhan University, Wuhan 430079, Chin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Sensors
سال: 2018
ISSN: 1424-8220
DOI: 10.3390/s18030780